FISA And EURADWASTE 2 0 2 5	DIRECT IMMOBILIZATION OF REAL RADIOAC LIQUID ORGANIC WASTE IN NOVEL GEOPOLYN OUTCOMES FROM THE PREDIS PROJECT	
MILANO 1863	United Kingdom National Nuclear Laboratory	Gabriele Magugliani ^{1,*} , Eros Mossini ¹ , Carlo Forconi ¹ , Martin Hayes ² , Samantha Irving ² , Fabio Fattori ¹ , Francesco Galluccio ¹ , Elena Macerata ¹ , Andrea Santi ¹ , Mario Mariani ¹ ¹ Politecnico di Milano, Department of Energy, Piazza Leonardo da Vinci 32, Milano, 20133, Italy ² National Nuclear Laboratory, Havelock Rd, Workington, Cumbria, CA14 3YQ, United Kingdom

Introduction

The safe and cost-effective management of Radioactive Liquid Organic Wastes (RLOWs) poses many challenges. The physico-chemical properties of RLOW severely hinder their immobilization and solidification with conventional conditioning matrices such as Ordinary Porland Cement (OPC), with which only modest waste loading factors can be achieved. To better exploit the potential of the direct conditioning approach for the management of RLOW, new matrices with better waste compatibility are necessary.

Scope of the work

The research aimed at developing a geopolymeric (GP) matrix suitable for the immobilization and solidification of RLOW at high loading factors via the direct conditioning approach, *i.e.* without waste pre-treatment. The work was subdivided into two main parts: firstly, a matrix formulation with enhanced compatibility with organic liquids was developed. Then, waste forms were produced by incorporation of both surrogate and real RLOW samples. Obtained specimens were tested for durability after accelerated degradation and evaluated in terms of mechanical strength and radionuclide immobilization effectiveness. Validation of the results was performed by comparison with Waste Acceptance Criteria (WAC).

Materials and Methods

Formulation development

GP formulation based on metakaolin, K-silicate, KOH, water, surfactant.

Surrogate RLOW: tributyl phosphate/dodecane, 30/70 vol% **Real RLOW**: ligand in kerosene/1-octanol, 95/5 vol%, spent partitioning solvent w/ actinides, 0.2 M HNO₃

Exp	oloration of mo	olar ratios in the rar	ige:
SiO ₂ /K ₂ O	1.0 – 1.4	H ₂ O/K ₂ O	11 – 15
K_2O/AI_2O_3	1.0 – 1.5	Surfactant	1 – 3 vol%
	RLOW	0 – 50 vol%	

Preparation through high-shear mixing protocol:

Testing protocols

Physical properties:

viscosity, reaction heat, setting time, porosity.

Compressive strength R_c:

- Between 2 90 d curing time to monitor strength evolution
- After degradation by
 - 28-day water immersion
 - Co-60 irradiation up to 200 kGy

DAY 0	DA	Y 28 DAY	Y 56 DAY	Y 84 TIME
	CURING	STORAGE	STORAGE	COMPRESSION
	CURING	STORAGE	IMMERSION	COMPRESSION
	CURING	IRRADIATION	STORAGE	COMPRESSION

Radionuclides leaching: ANSI/ANS-16.1-2019 protocol, water immersion + leachate analysis to determine leachability index L of several contaminants

Validation: comparison with WAC: R_c > 5 MPa, L > 6

Results

Formulation development – main observations

- Lowering H₂O/K₂O and K₂O/Al₂O₃ ratios results in difficult waste incorporation, especially at high loading factors
- Increasing H_2O/K_2O and K_2O/Al_2O_3 ratios results in lower compressive strength
- 3 vol% surfactant allows highest waste loading, with minimal mechanical drawbacks
- Higher waste loadings imply higher viscosity and reduced compressive strength. 30 vol% reliably achievable

Take-home message: mid-point formulation (1.2 – 1.2 – 13 molar ratios) as best compromise. High workability, reaction heat similar to OPC. Rapid strength gain (<10 d) with only slight bleeding (<1%), for RLOW up to 30 vol%.

Durability tests

Decrease in R_c with waste, but > WAC

WAC satisfied also after degradation by 28 days water immersion

Missing data for samples degraded by irradiation – samples cracked due to air drying. Problem enhances in case of subsequent contact with water

No significant difference between surrogate and real waste samples = **robustness**

Similar porosity values for all samples, regardless of waste

Porosity	No waste	30 vol% RLOW
No degradation	33%	35%
Immersion	33%	33%
Irradiation	32%	38%

All leaching indexes L > 8, conservative with respect to WAC

Conclusions

The feasibility of direct conditioning of RLOW via a new GP formulation was assessed. The developed conditioning matrix showed good waste compatibility also at high loading factors and adequate mechanical resistance. It also demonstrated good robustness, having been applied successfully for the conditioning of RLOWs of different nature. The durability of waste forms was verified and found compliant with WAC. The matrix becomes prone to cracking in case of storage in sub-optimal conditions. This behavior should be addressed to allow its use for a safe, effective and efficient implementation of the direct conditioning approach of RLOW.

Acknowledgment

This work was financially supported by the H2020-PREDIS project funded by the Euratom research and training program 2019–2020 under grant agreement No. 945098.

11th European Commission Conference on EURATOM Research and Training in Reactor Safety & Radioactive Waste Management 12-16 May 2025, Warsaw, Poland

