

SNETP Forum

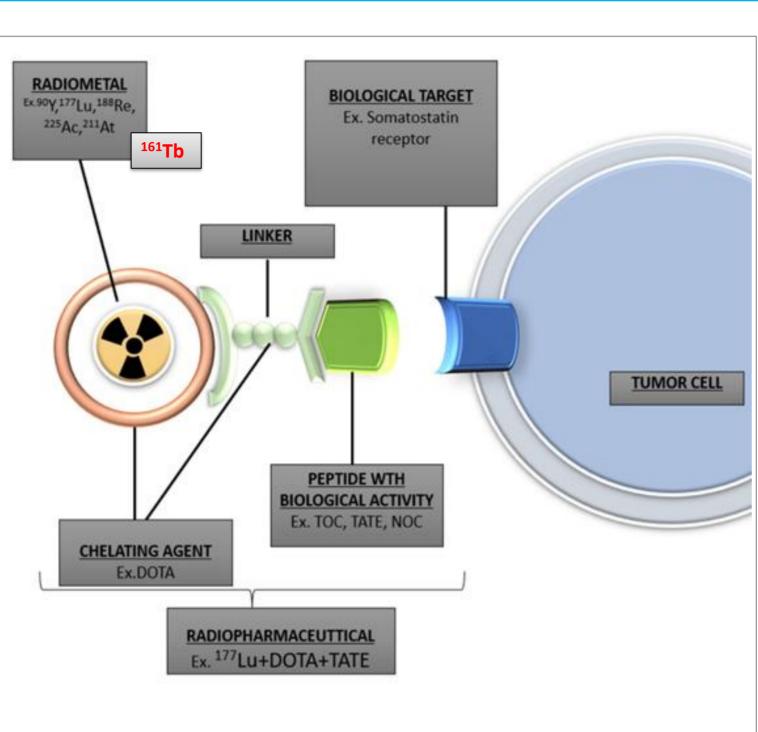
NATIONAL

CENTRE

ŚWIERK

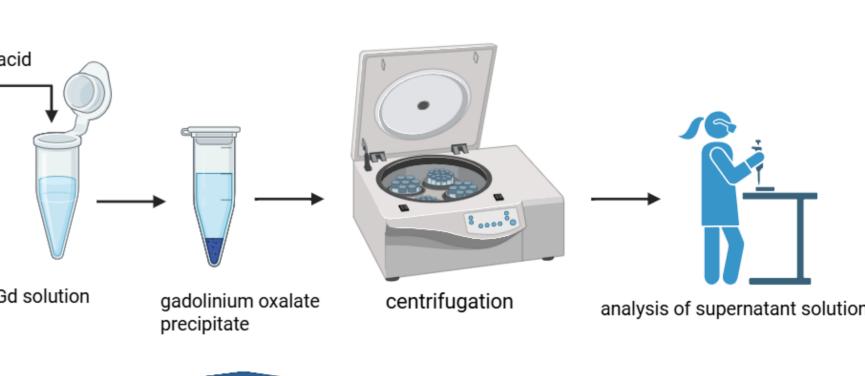
FOR NUCLEAR

RESEARCH


TERBIUM-161, IRRADIATION, SEPARATION AND RECOVERY OF TARGET MATERIAL

Małgorzata Żółtowska, Dariusz Pawlak, Izabela Cieszykowska, Anna Filiks, Paweł Saganowski, **Renata Mikołajczak** POLATOM

Radioisotope Centre POLATOM, National Centre for Nuclear Research, Otwock, Poland


1. Introdaction

Terbium-161 (¹⁶¹Tb, $t_{1/2} = 6.9$ d; $E^{\beta-}_{av} =$ 0.15 MeV) is an β - emitter. Its half-life, beta energy emission, and chemical properties are similar to lutetium-177 (¹⁷⁷Lu), which makes it useful in targeted radionuclide therapy. In addition, the emitted conversion and electrons suggest that the Auger therapeutic effect of ¹⁶¹Tb is better than that of ¹⁷⁷Lu. Tb-161 can be produced in nuclear reactors in following nuclear reaction.

3.2. Recovery method

Recovery the of target material was carried out by precipitation of gadolinium oxalate subsequent and thermal decomposition of the

Cancers 2022, 14, 584. https://doi.org/10.3390/cancers14030584

I Radiopharmacy and Chemistry (2022) 7:31 https://doi.org/10.1186/s41181-022-00183-y

We present the results of Tb-161 separation after irradiation of enriched gadolinium-160 (97.5%; 97.8%) in the Maria Research Reactor (NCBJ, Poland).

2. Description of the research problem

Target irradiation in Maria Research Reactor Development of efficient an Tb-161 separation method after irradiation of the Gd-160 target material

gadolinium precipitate to oxide. sediment Gd_2O_3 suspended in wate thermal decomposition in 800°C

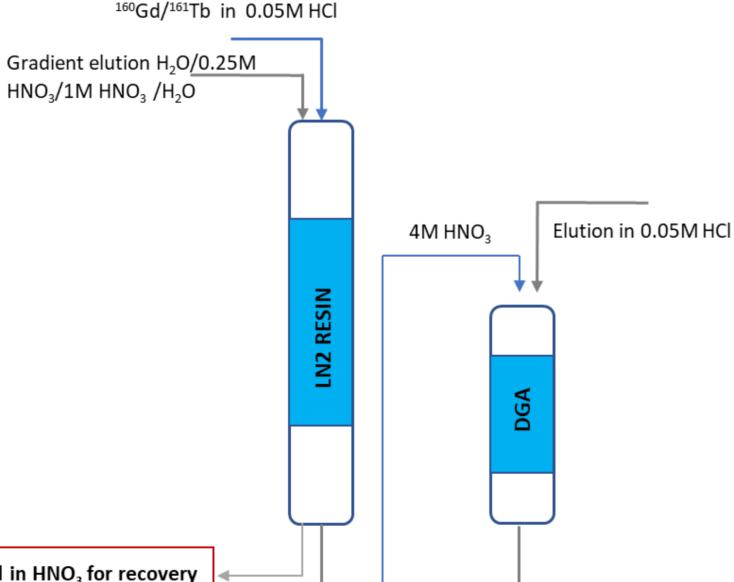
4. Results

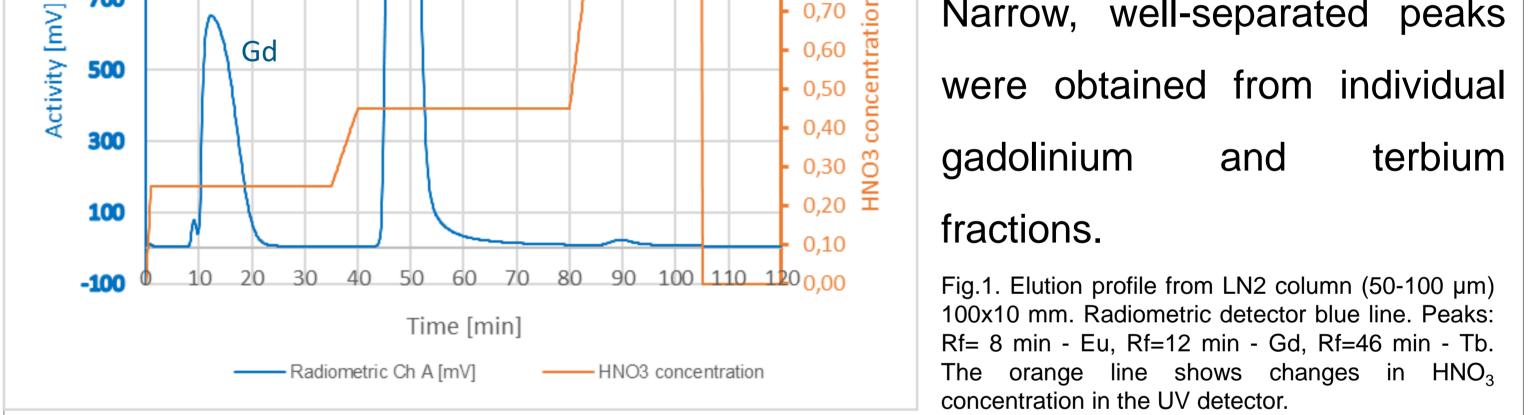
Results of the three irradiations of [¹⁶⁰Gd]Gd₂O₃ in the Maria reactor depending on the time of irradiation, the mass of the target, and target enrichment in ¹⁶⁰Gd are shown in Table 1.

Table 1. The radionuclide composition of the two target materials after irradiation and dissolution.

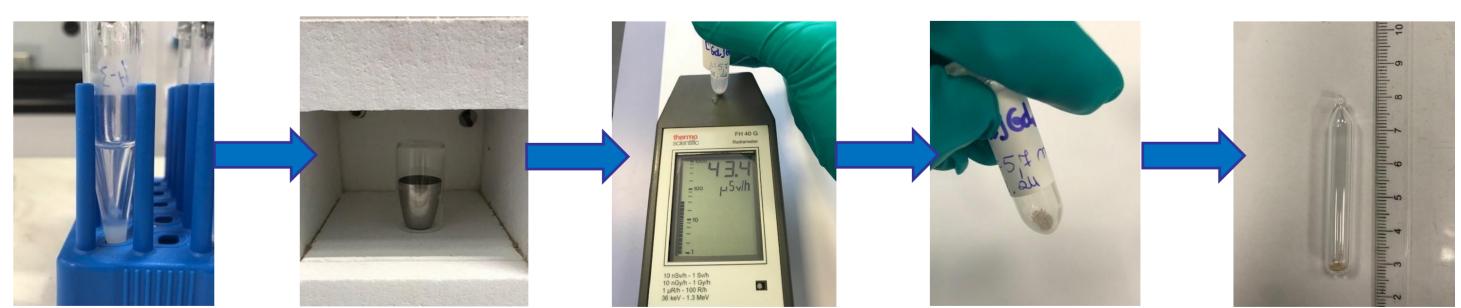
				Radioactivity at EOB [MBq]					¹⁶⁰ Tb	C A	
Batch No.	Irradiation time [h]	Target enrichement in ¹⁶⁰ Gd [%]	Target mass [mg Gd]	¹⁶¹ Tb	¹⁶⁰ Tb	¹⁵⁴ Eu	¹⁵⁶ Eu	¹⁵³ Gd	content [%]	SA ¹⁶¹ Tb [MBq/mg Gd]	
03 P	215	97.5	7.3	6880	18.17	nd	nd	1.71	0.26	942.5	
04 P	216	97.8	10.1	8602	nd	0.12	0.56	nd	nd	851.7	
05 P	335	97.8	10.1	10435	nd	nd	4.43	0.54	nd	1033.2	
1100						The	The Fig.1. presents the elution				
900		Tb			0,90 0,80 <u>V</u>	prof	ile fr	om	LN2	column.	
_ 700					0.70 5	Mor			naratac	1 nooka	

Recycling of the target material for reuse


3. Methodology


The separation of Tb-161 from a gadolinium target was optimized in a two-step extraction chromatography, first on LN2 resin and then on DGA resin.

the gadolinium oxalate precipitation method was used and experiments were carried out with natural Gd and Gd solution after the separation process.


3.1. Separation method

Gadolinium oxide enriched in ¹⁶⁰Gd (97.5 %; 97.8 %) was activated in the Maria research reactor in a declarated thermal neutron flux of 2×10¹⁴ ns⁻¹cm⁻². The separation of Tb-161 from a gadolinium target was optimized in a two-step extraction chromatography,

The method of precipitation of natural gadolinium oxalate was optimized by investigating the influence of pH and volume of oxalic acid on the precipitation efficiency. The method was verified by preparing recycled material and preparing the target for re-irradiation. Gamma spectrometry measurements and ICP-OES analysis of the solution after irradiation and dissolution of the target were performed. The photos below show the steps of obtaining the recycled [¹⁶⁰Gd]Gd₂O₃ target material and packing the weighed portion into a quartz ampoule.

resin.

¹⁶¹Tb in HNO₃

¹⁶¹Tb in 0.05M HCl

After dissolving the target in 3 M HCI, the solution was loaded on the LN2 column, and Tb-161 was eluted with a nitric acid gradient from 0.25 M to 1 M system. Then, the Tb-161 nitrate solution was loaded on the DGA column and eluted with diluted hydrochloric acids. Quality control tests included radionuclidic, chemical and radiochemical purity. The suitability of ¹⁶¹Tb solution was assessed by radiolabeling of the peptide DOTA-TATE (Radioisotope Centre POLATOM, NCBJ). The efficiency of radiolabeling was over 99 %.

5. Conclusions

The presented results confirm the effectiveness of the proposed Tb-161 separation

method and the Gd-160 target material recovery method. Well separated gadolinium

and terbium-161 fractions were obtained. The recovered target material can be used for re-irradiation to obtain Tb-161.

6. Acknowledgments

The publication was partially created within the project PRISMAP funded by the European Union under grant agreement No 101008571.

The publication was partially created within the project SECURE funded by the European Union under grant agreement No. 101061230.

