FISA Mun
EURADWASTE
2025

SNETP Forum

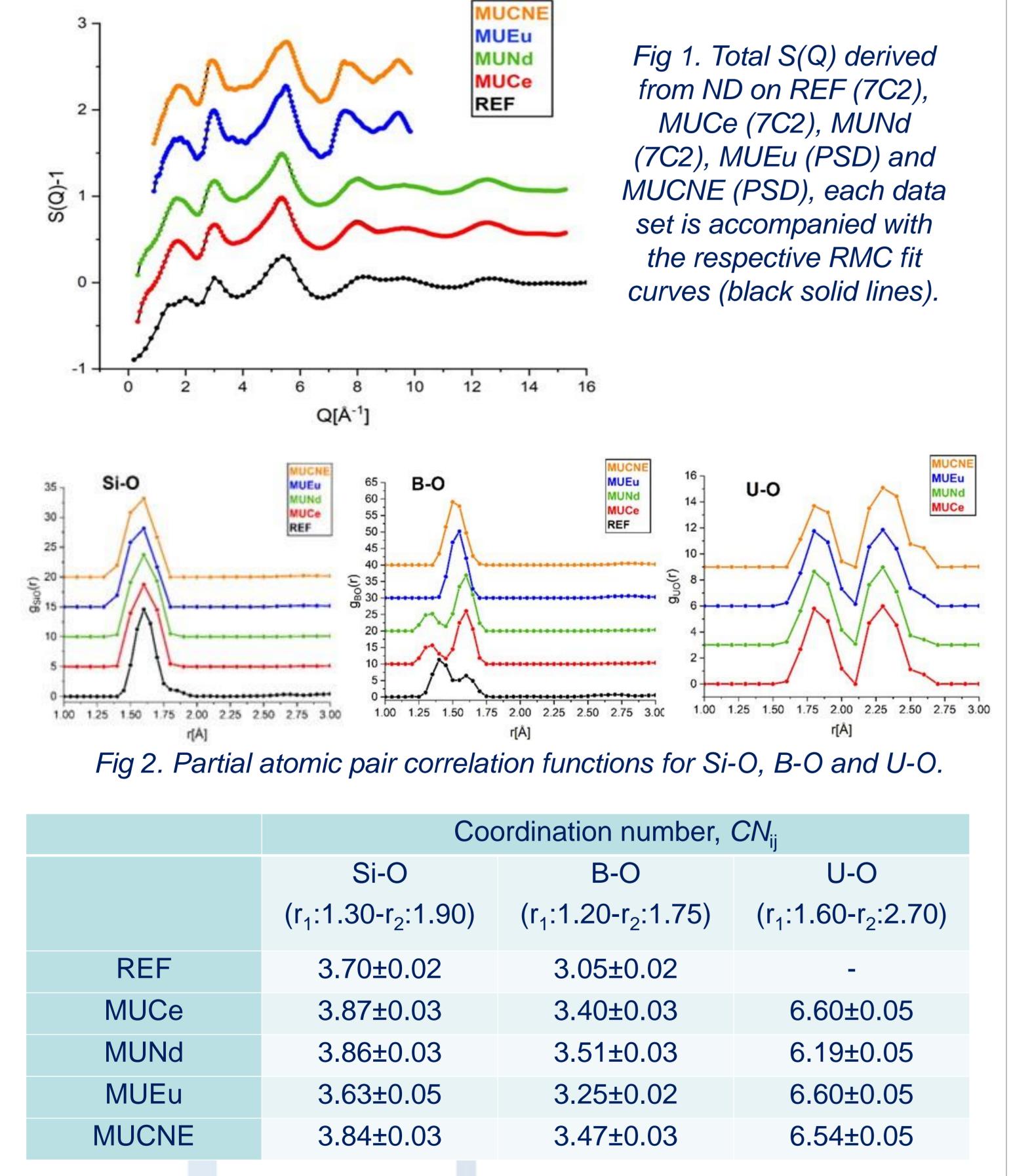
Structural characterization of uranium and lanthanide loaded borosilicate glass matrix

Margit Fabian¹, Istvan Tolnai¹, Fani Pinakidou² and Janos Osan¹

¹HUN-REN Centre for Energy Research, Institute for Energy Security and Environmental Safety, Budapest, 1121, Konkoly Thege st. 29-33, Hungary ²Aristotle University of Thessaloniki, School of Physics, Thessaloniki, 54124, Greece

Introduction

Spent nuclear fuel remains highly radioactive after reprocessing due to actinides and fission products, which requires a safe containment within a durable, long-lived inert medium over extended timescales. Borosilicate glass is a potential candidate for this purpose, thus understanding the effects caused by the combined presence of uranium and actinides within these matrices is of great importance.


Description of the research problem

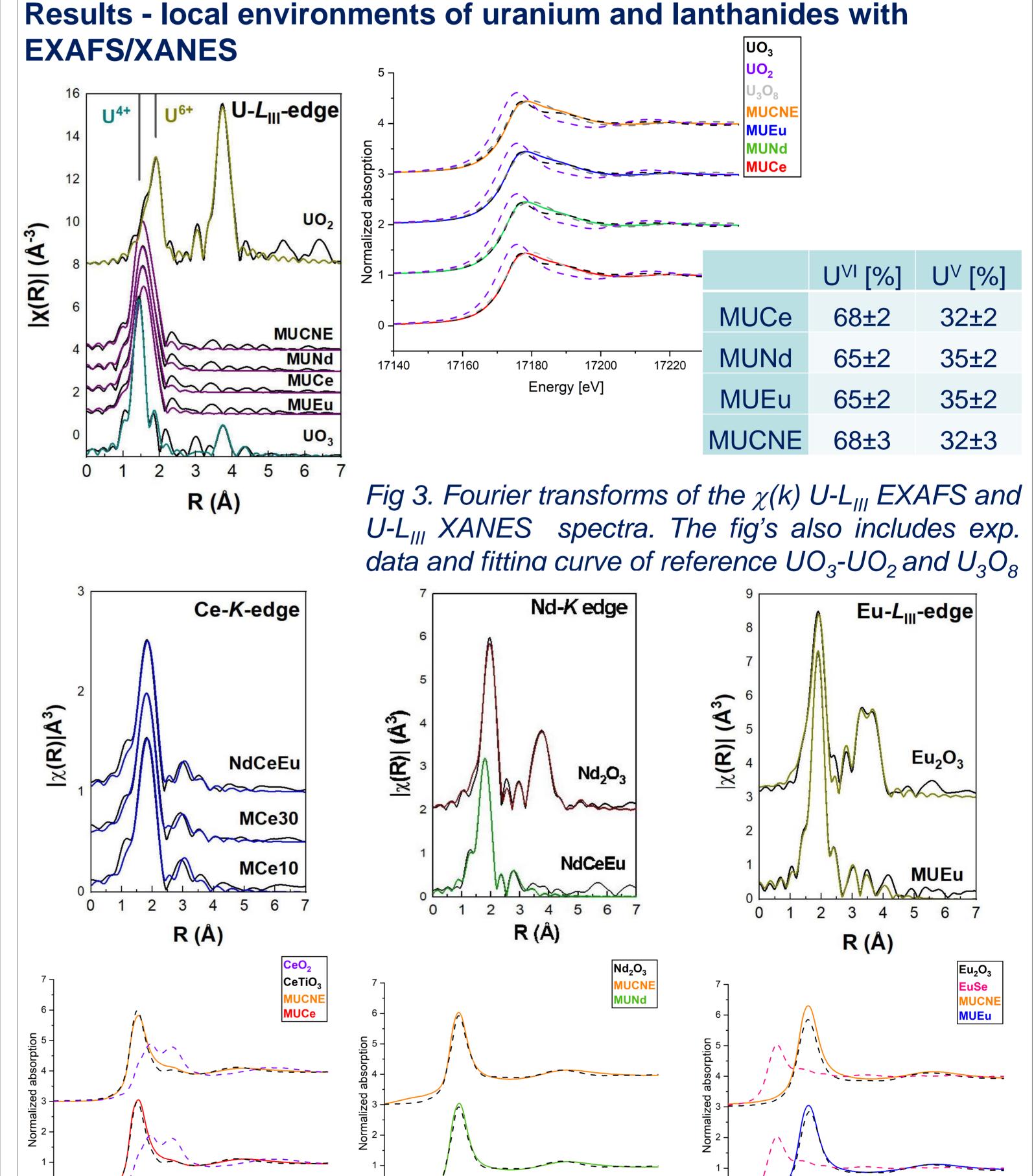
The focus of this study is on the structural changes that occur in the borosilicate glass when loaded with mixture of lanthanides and uranium a novel combination that has not been explored yet. The simulated waste form incorporates Ce(IV) oxide, Nd(III) oxide, Eu(III) oxide, and U(VI) oxide, allowing a comprehensive analysis of the combined effects of these elements, thus providing a more realistic model for nuclear waste encapsulation. Four distinct glass samples were synthetized and

Methodology

- ✓ neutron diffraction (ND) experiments: PSD diffractometer/BNC $(\lambda_0 = 1.068 \text{ Å}, Q \le 9.8 \text{ Å}^{-1}) \& 7C2 \text{ diffractometer/LLB} (\lambda_0 = 0.726 \text{ Å}, Q \le 15.3)$ Å⁻¹), with Reverse Monte Carlo (RMC) simulations
- ✓ X-ray absorption fine structure (XAFS) spectroscopy
- ✓ leaching tests (ASTM C1285-21) were performed with porewater in corporation with thermal analysis techniques

Results - atomic structure from ND data via Reverse Monte Carlo simulation - the samples were fully amorphous

investigated to gain deeper insight into the structural evolution of this complex system. The following samples were synthetized and investigated:


70wt.%[Matrix]+20wt.%UO₃+10wt.%CeO₂, denoted as MUCe

70wt.%[Matrix]+20wt.%UO₃+10wt.%Nd₂O₃, MUNd

70wt.%[Matrix]+20wt.%UO₃+10wt.%Eu₂O₃, MUEu

 $60wt.\%[Matrix]+10wt.\%UO_3+10wt.\%CeO_2+10wt.\%Nd_2O_3+10wt.\%Eu_2O_3,$ MUCNE

Matrix: $55SiO_2 \cdot 10B_2O_3 \cdot 25Na_2O \cdot 5BaO \cdot 5ZrO_2$ (mol%), REF

MUEu	65±2	35±2
MUCNE	68±3	32±3

Table 1 Average coordination numbers, determined from RMC simulations for Si-O, B-O and U-O atomic pairs.

Conclusions

The glass matrix was simultaneously loaded with UO₃ and lanthanide oxides (CeO₂, Nd₂O₃, and Eu₂O₃) as chemical surrogates for actinides.

Energy [eV] Fig 4. Fourier Transforms of the EXAFS spectra recorded at the Ce-K, Nd-K, Eu-L_{III} edge and Ce-L_{III}, Nd-L_{III}, Eu-L_{III} XANES spectra compared to the reference compounds.

ND with RMC simulation confirmed that the basic glass structure is comprised of SiO₄ and BO₃/BO₄ units. X-ray absorption Acknowledgments spectroscopy indicated the presence of Ce mainly as Ce^{III} and the co-existence of U^V and U^{VI}. U acts as an intermediate oxide and reduces the number of four-coordinated B, lanthanide ions serve as modifiers, with their increasing concentration shifting the B-O coordination from 3 to 4. No redox sensitivity was observed, the Nd existing purely in the Nd^{III} oxidation state. MUEu and MUCNE samples containing only Eu^{III} ions. LCF analysis of the U L_{III}-edge indicated no U^{IV} presence. Leaching tests showed increased dissolution of Si, B, and Na, compared to the glass matrix; MUCNE sample exhibited the most stable structure.

This work was party supported by the HUN-REN EK Nr. 130 and cofunded by the European Union under Grant Agreement n° 101166718.

11th European Commission Conference on EURATOM Research and Training in Reactor Safety & Radioactive Waste Management 12-16 May 2025, Warsaw, Poland

