

SNETP Forum

Transition metal sorption on bentonite and behaviour of the bentonite/copper/glass system

János Osán¹, István Tolnai¹ and Margit Fábián¹

UnderstandCentre for
Energy ResearchCentre for
Energy ResearchCentre for
Energy ResearchControlCentre for
Energy ResearchCentre for
Energy ResearchCentre for
Energy Research

¹Institute for Energy Security and Environmental Safety, HUN-REN Centre for Energy Research, Konkoly-Thege M. út 29-33., H-1121 Budapest, Hungary

Introduction

- In Europe, the final disposal of high-level radioactive waste is planned in deep geological repositories.
- Their long-term safety is guaranteed by natural and engineered barriers, preventing radionuclides from entering the biosphere.
- An important element of the engineered barriers is the backfill material surrounding the waste packages.
- Due to their beneficial physico-chemical properties and high cation exchange capacity, bentonites are considered as a potential backfill material in several waste storage concepts.
 Selected materials of the engineered barrier system of the deep geological repository were examined on a macro, micro and nano scale.

Results

Adsorption/desorption isotherms of Ni(II) and Co(II) on B75 bentonite

Objectives

- To investigate the retention of Ni(II) and Co(II) by the B75 bentonite through adsorption and desorption experiments
- To study the interactions between materials of the glass/copper/bentonite model system under repository conditions

Materials

- Bentonite/copper/glass engineered barrier system
- Waste matrix: borosilicate glass
 55%SiO₂-10%B₂O₃-25%Na₂O-5%BaO-5%ZrO₂,
 2.67 g/cm³
- Container: copper Cu rod (d=2mm, 99.99%), Cu tape (99.7%), Cu sliver (99.8%)
- Buffer: bentonite

B75 bentonite (Ca,Mg-bentonite, Czechia, <100 μm fraction)

Sorption and desorption isotherms indicate irreversibility of sorption for both ions at the highest concentrations. Supported by modelling considering an 80% Ca-montmorillonite content. Experimental isotherm underestimated for high concentrations indicating and additional uptake mechanism through formation of a new phase.

SEM/EDX results on Cu surfaces after 3, 6 and 9 months SEM images of Cu rod surfaces

EDX elemental composition (wt.%) of different Cu surfaces rod sliver														
С	N	0	S	Cu	С	Ν	0	S	Cu	С	N	0	S	Cu
4.0) _	6.3	2.4	86.4	5.2	1.4	7.7	5.4	79.8	3.3	2.9	12.4	1.0	79.6
4.1	-	11.5	-	83.0	8.1	-	42.4	1.7	46.6	3.1	-	18.4	-	74.6
6.9	4.8	28.7	-	59.7	8.6	2.3	25.6	3.7	58.9	3.1	-	17.1	2.8	77.1

Bentonite	Mineral composition (wt.%)										
Smectite	Quartz	Kaolinite	Illite	Calcite	Siderite	Anatase					
82.5	9	2	2	2	2	0.5					

hydraulic conductivity (1.5 g/cm³): 3.75×10⁻¹³ m/s swelling pressure (1.5g/cm³): 2.7 MPa

Porewater Dissolved components (M)												
рΗ	I (M)	Na	К	Mg	Ca	Cl	CO_3/HCO_3	SO ₄	Si			
8.1	0.02	1.7×10 ⁻²	1.8×10-4	2.3×10 ⁻³	3.1×10 ⁻³	2.3×10 ⁻²	6.1×10 ⁻⁴	1.9×10 ⁻³	3			

Synthetic porewater characteristic for Boda Claystone Formation, a potential host rock of deep geological repository in Hungary

Methods

 Sorption/desorption isotherms on bentonite batch experiments, dispersed in porewater Co(II) and Ni(II) 10⁻⁷–10⁻³ M ICP-OES Ni(II) 10⁻⁹–10⁻³ M ⁶³Ni radiolabeling LSC

 Triplicate bentonite/copper/glass experiment the experimental setup was kept at 80°C It is assumed that upon saturation the canister surface will be covered by a duplex corrosion product layer comprising an inner layer of Cu_2O and an outer layer of basic Cu(II) salts, most likely malachite $(Cu_2CO_3 \cdot (OH)_2)$

In the case of tape and sliver we can infer to high quantity of $CuCO_3$ and Cu_2O_3 , and the S concentration shows a significant increase, which contribute to the strong appearance of Cu_2S .

XPS surface chemical compositions (at.%) of glass surfaces Only minor changes detected over time

Elements	Si 2p	Zr 3d	O 1s	Ba 3d5	Na 1s	Ca 2p3	K 2p	Mg KL1	B1s
Glass Ref.	20.5	1.7	60.8	1.5	11.7	0.8	0.5	1.4	2.0
Glass 3M	17.6	7.8	69.8	0.3	2.9	1.9	0.5	0.8	0.5
Glass 6M	15.0	9.3	67.6	0.2	2.2	2.2	0.5	1.1	0.0
Glass 9M	13.8	11.3	65.7	0.1	2.0	2.0	0.6	0.0	0.0

after 3, 6, and 9 months one container opened the ,system' was fully saturated using porewater

Conclusions

- B75 bentonite binds Ni(II) and Co(II) ions to a similar extent as the Boda claystone (Hungary)
- Electron microscopy investigations revealed a slight corrosion on the copper surface, mainly Cu₂O was detected as a corrosion product
- Only minor changes were observed in the elemental composition of the borosilicate glass surface
- In the simulated geological conditions, the components of the bentonite/Cu/glass engineered barrier system do not exert a significant influence on each other, individually preserving integrity

The research was co-funded by the European Union under Grant Agreement No. 101166718 (EURAD-2). The authors are grateful to A. Sulyok for XPS measurements.

11th European Commission Conference on EURATOM Research and Training in Reactor Safety & Radioactive Waste Management 12-16 May 2025, Warsaw, Poland

