Bulk Hydrogen Analysis of Cyanogenic food plants using neutrons Keziah Garba¹, Jonah Sunday², Elewechi Onyike³

FISA Mara EURADWASTE 2025

¹Department of Nuclear Engineering, LUT University, Lappeenranta, Finland ²Nuclear Science and Technology Section, Centre for Energy Research and Training, Zaria, Nigeria ³Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria

SNETP Forum

Introduction

Nuclear techniques extend beyond energy, finding applications in medicine, archaeology, and food safety. This study explores neutron-based methods to assess hydrogen and cyanide content in sorghum and cocoyam for improved food quality control.

Research Problem

Food safety remains a concerning issue, affecting over 820 million people globally. In rural Africa,

Alkaline Picrate Method for Cyanide Analysis

- Varying concentrations of potassium cyanide were analyzed to obtain a calibration curve for the cyanide content.
- The results were extrapolated from the standard calibration

Results

1.2

where 70% of staple foods contain cyanogenic glycosides, improper processing poses severe health risks. Traditional quality control methods, such as wet chemical analysis, are time-consuming, destructive, and inefficient for routine screening. This research addresses the need for a fast, non-destructive, and accurate method to assess hydrogen and cyanide content in cocoyam and sorghum using neutron-based nuclear techniques. By improving detection efficiency, this study enhances food safety monitoring and reduces the risk of cyanide poisoning.

Aim

This research aims to investigate the bulk hydrogen content of sorghum and cocoyam about their cyanide content using neutrons for routine quality control.

Objectives

- Determine the hydrogen content of sorghum and cocoyam
- Evaluate the cyanide content of sorghum and cocoyam
- Assess the total hydrogen content in sorghum and cocoyam as a quality control indicator of starch content.
- Re-calibrate and re-characterize the neutron reflection analytical facility at CERT, ABU, Zaria

Figure 3: Standard Curve for Hydrogen

The hydrogen content of the food samples was obtained via extrapolation from the standard hydrogen calibration

The total hydrogen weight percent (H wt%) ranges from 6.083 ± 1.10 to 8.2854 ± 0.10 .

Similarly, the cyanide content was extrapolated from the standard cyanide calibration curve.

0.14

Figure 1: Cocoyam

Methodology

Four different varieties of sorghum and cocoyam were collected from retail outlets in Nigeria, washed clean and dried in an oven at 80°C.

Neutron reflection for Hydrogen assessment

Figure 2: The neutron reflection set-up

Figure 4: Standard Curve for Cyanide

Discussion

- Total hydrogen weight per cent (*H wt%*) was determined using a linear relationship with neutron attenuation coefficient (η), following the equation y = 0.0515x + 0.2313
- Neutron attenuation was balanced using sample densities, and reflection parameter values were directly proportional to hydrogen content, supporting findings by Isah et al.
- Cyanide content was extrapolated using a calibration graph with the equation, yielding values between 0.00384 ± 0.00009 and 0.00628 ± 0.0004 .
- The study demonstrates the effectiveness of neutron-based techniques for food quality control, offering a rapid, non-destructive alternative to traditional chemical methods, with potential applications in large-scale food safety monitoring.

Conclusion

- This technique utilizes the relative intensity of thermal neutrons reflected by a bulk sample to give the total hydrogen content of a sample.
- Liquid hydrocarbons were assessed to obtain a standard calibration curve for the hydrogen content.
- 400ml of each sample was measured into the sample holder and exposed to thermalized neutrons from an Am-Be source.

 $\eta = \frac{1}{\rho} \frac{I - I_0}{I_0}$

- Thermal neutron reflection is reliable for probing hydrogenous samples, and its application in this study enabled accurate assessment of hydrogen and cyanide content in sorghum and cocoyam.
- Results indicate an inverse relationship between hydrogen and cyanide content, confirming previous findings on cyanogenic food plants like cassava and reinforcing the viability of neutron reflection for quality assessment.
- The neutron reflection facility can be adapted for direct hydrogen content determination in food safety applications which is a fast and non-destructive alternative to traditional chemical analysis methods.

11th European Commission Conference on EURATOM Research and Training in Reactor Safety & Radioactive Waste Management 12-16 May 2025, Warsaw, Poland

