FISA Mun **EURADWASTE** 2025

SNETP Forum

Deep Learning Surrogate Models for Neutronic Irradiation Optimisation in IFMIF-DONES

Nikita Khvatkin Petrovsky¹, Lucas Magariños Rodríguez¹, Guillermo Rodríguez Llorente^{1,2,3}, Rodrigo Morant Navascués¹, Galo Gallardo Romero¹, Rubén Lorenzo Ortega⁴, Roberto Gómez-Espinosa Martín¹

¹Artificial Intelligence Department, HI Iberia, 28036, Madrid, Spain

²Gregorio Millán Barbany Institute for Fluid Dynamics, Nanoscience and Industrial Mathematics, Universidad Carlos III de Madrid, 28911, Madrid, Spain ³Department of Mathematics, Universidad Carlos III de Madrid 28911, Leganés, Spain

⁴IFMIF-DONES Spain Consortium, 18010, Granada, Spain

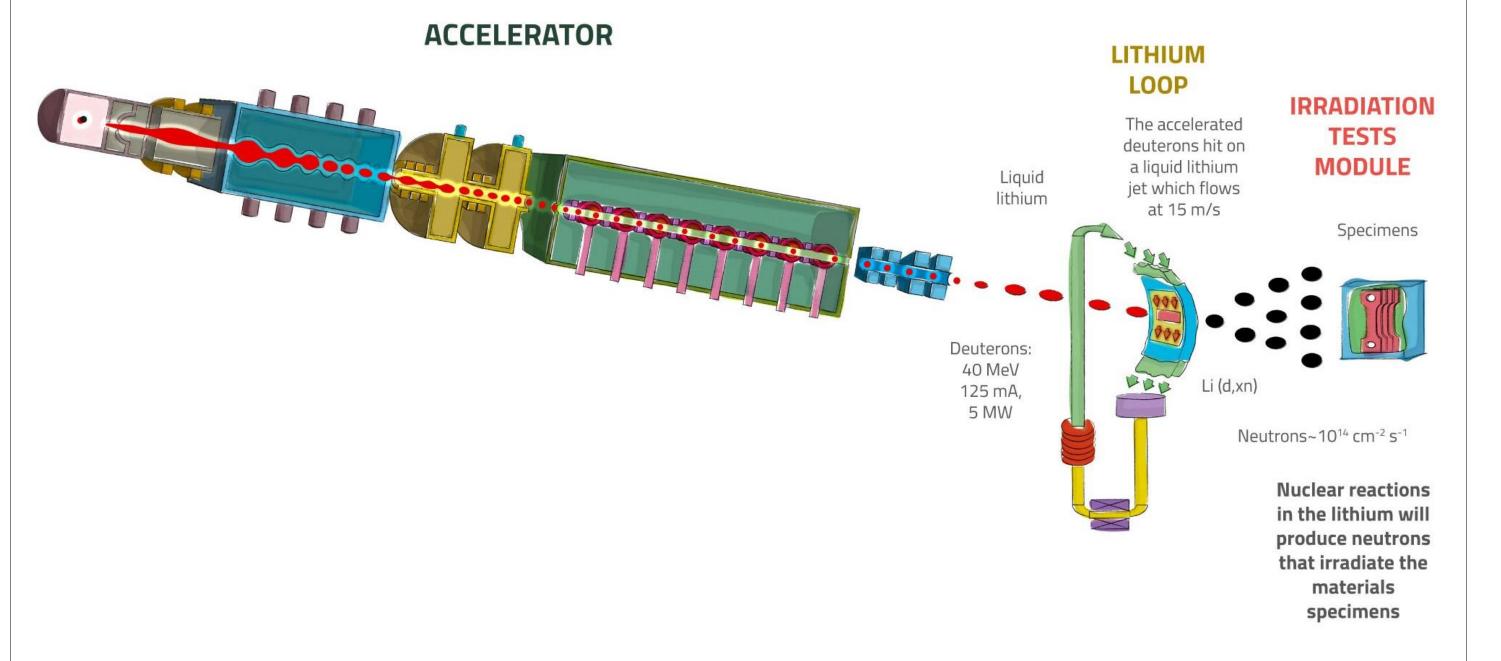
INTRODUCTION

The **IFMIF-DONES** project, which aims to pave the way for understanding the effects of high-energy and high-flux neutronic irradiation on materials, is a crucial step for the

RESULTS

- **Speed**: speedup $\geq 10^6$, compared with the simulator
- Accuracy:
 - \circ R² = 0.994 ± 0.00158

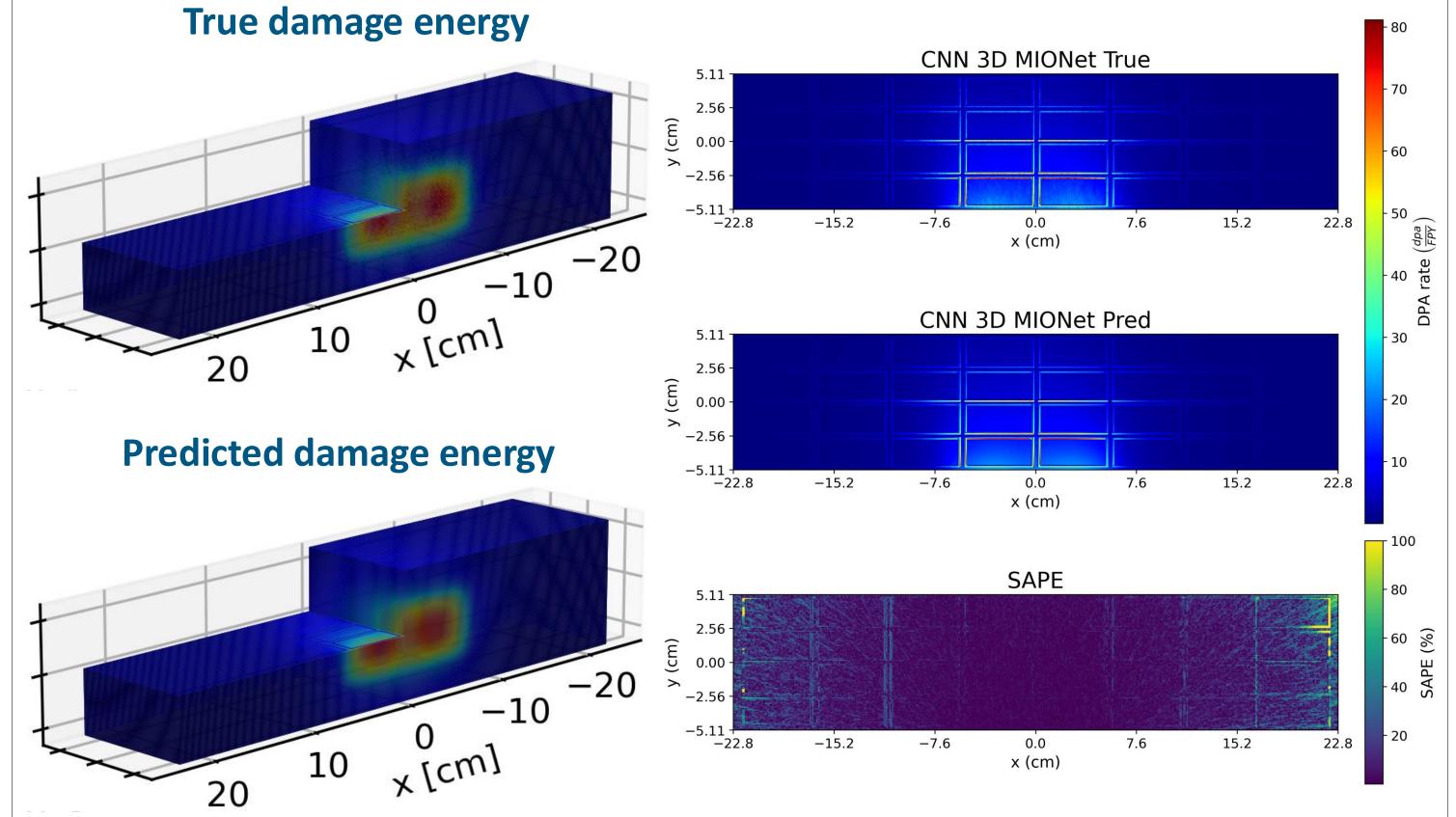
future of fusion reactors.



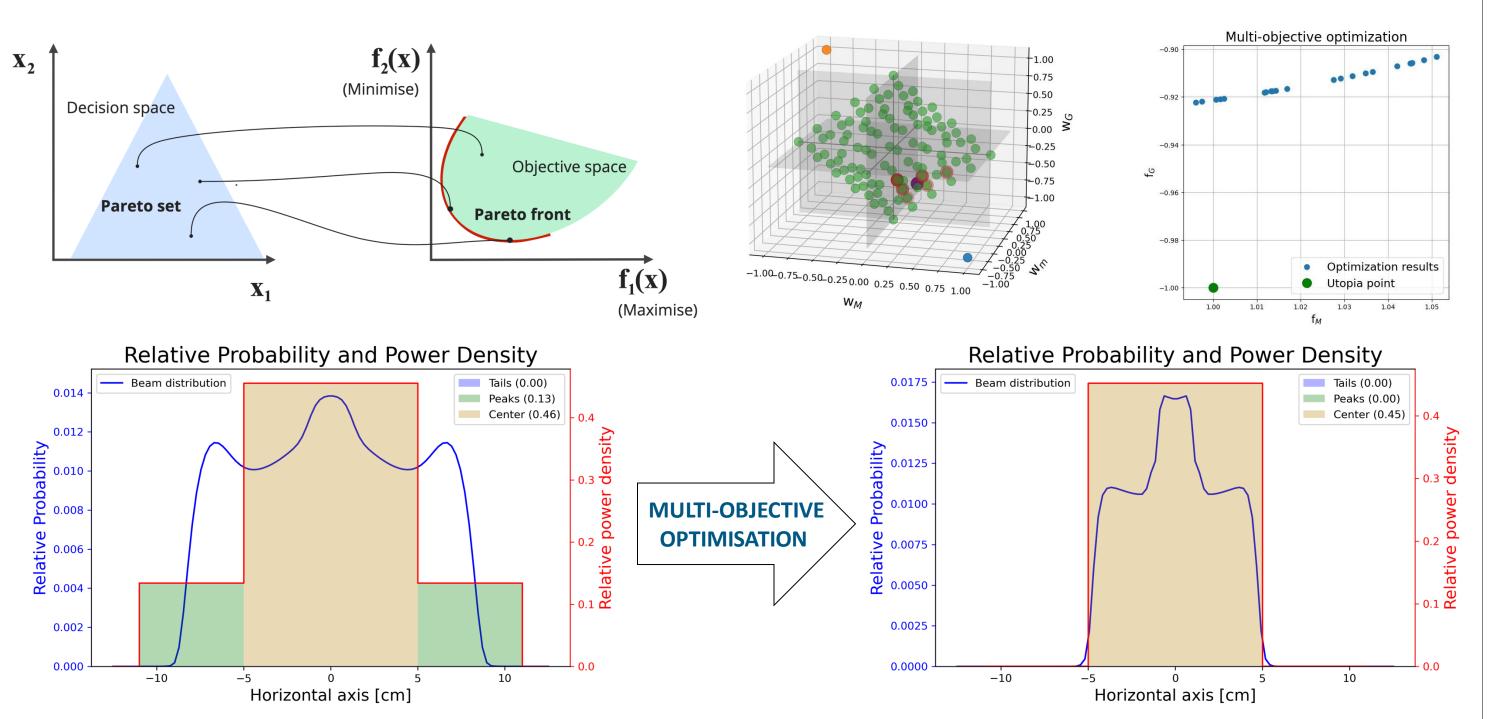
DESCRIPTION OF THE RESEARCH PROBLEM

Monte Carlo simulations are traditionally used to study studies; however, transport their neutronic computational cost limits the ability to optimise and control elements such as geometry or accelerator configuration, in the case of IFMIF-DONES. To alleviate this problem, the usage of differentiable **Deep Learning** Surrogate Models (DLSM) are employed.

 \circ sMAPE (%) = 8.74 ± 1.08

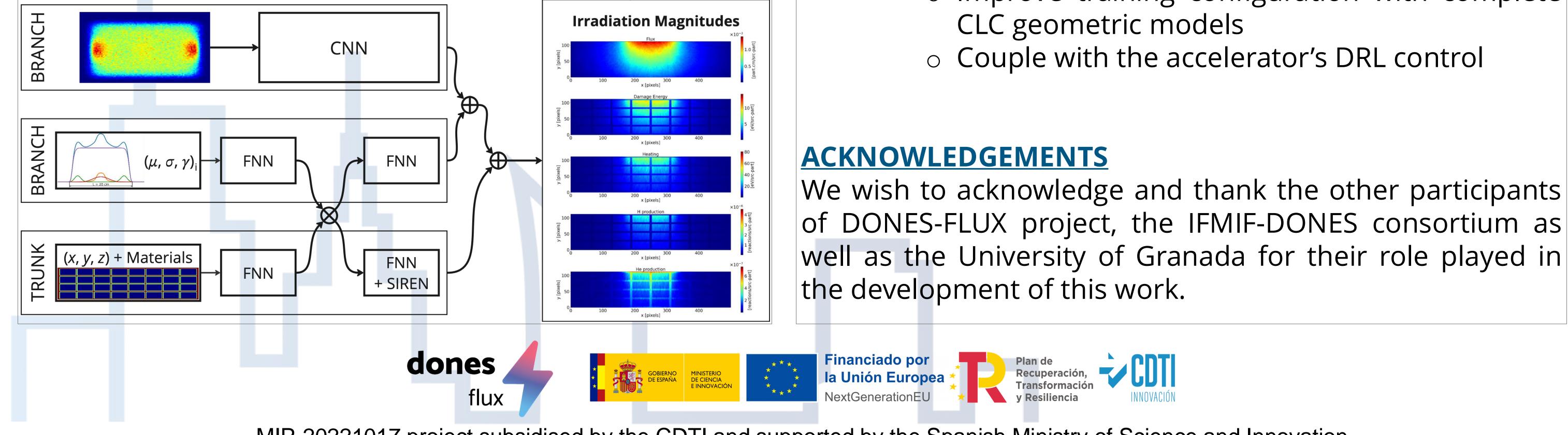


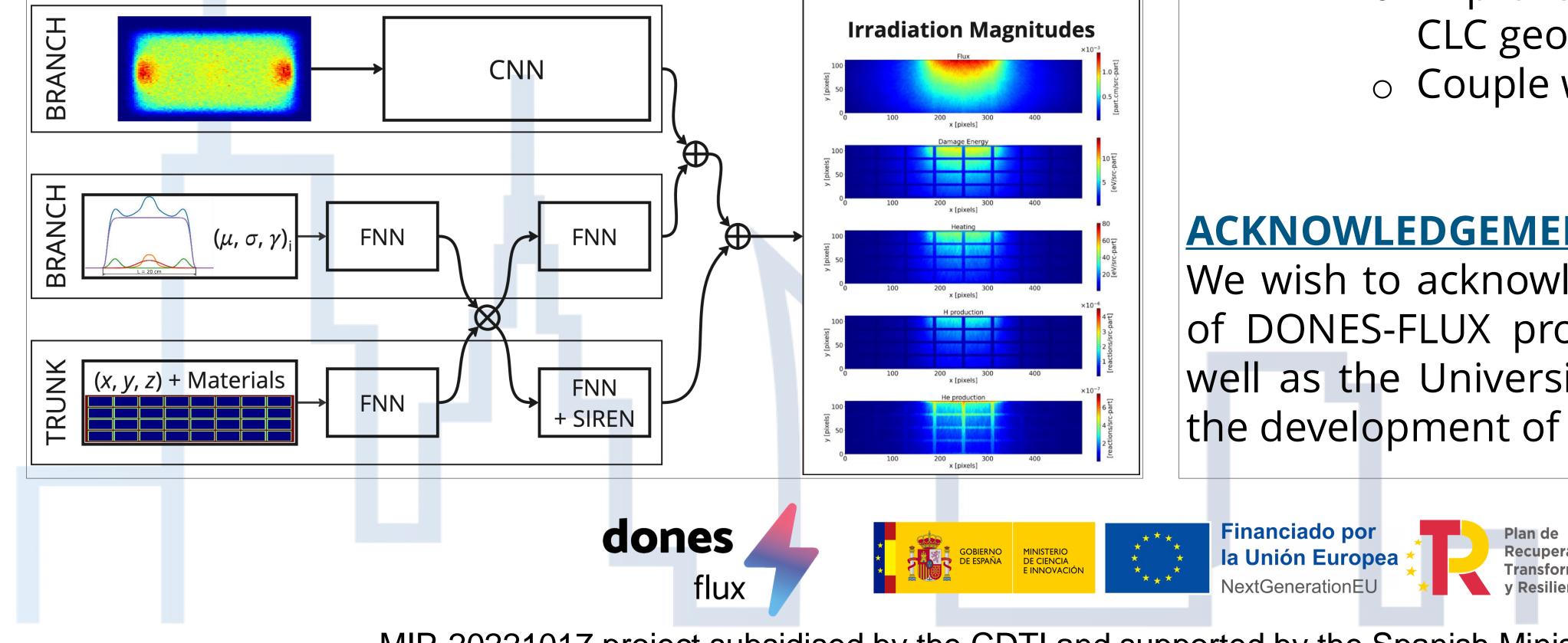
Optimisation: GD, by leveraging differentiable model



METHODOLOGY

- 1. Create a **soft-coupled Monte Carlo simulator** of the stripping reaction and neutron transport to predict neutron flux, damage energy, H and He production and heating.
- 2. Generate simulations for different inputs \rightarrow deuteron beam lengths (L) and Gaussian parameters (σ_i , μ_i , γ_i)
- 3. Train a **MIONet** (Trunk: geometry and materials, Branches: Gaussian parameters + footprint image)
- 4. Test predictions and their inference time
- 5. Use the nets differentiability to perform **Gradient Descent** (GD) and inverse design the Gaussian parameters





CONCLUSIONS

- Computational efficiency of DLSM
- Potential for real-time control and design optimisation in fusion facilities
- Future work:
 - o Improve training configuration with complete CLC geometric models
 - Couple with the accelerator's DRL control

MIP-20221017 project subsidised by the CDTI and supported by the Spanish Ministry of Science and Innovation

11th European Commission Conference on EURATOM Research and Training in Reactor Safety & Radioactive Waste Management 12-16 May 2025, Warsaw, Poland

