

GAMMA RADIATION SHIELDING GLASSES LENSES DESIGN IN GLASS MATERIAL SYSTEMS $\text{TeO}_2\text{-TiO}_2\text{-ZnO}$; $\text{WO}_3\text{-MoO}_3\text{-TeO}_2$, AND $\text{Bi}_2\text{O}_3\text{-B}_2\text{O}_3\text{-TeO}_2$

RIFKA NURBAYTI^{1,*}, MOKHAMMAD NAUFAL ALATAS^{2,3,4}, SUBUR PRAMONO¹, MUHAMMAD YUSUF³

¹*Department of Physics, Faculty of Science, UIN Sultan Maulana Hasanuddin, Serang City, 42171, Banten*

²*Department of Nuclear Engineering and Engineering Physics, Faculty of Engineering, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia*

³*Radionuke Consultant Indonesia, Pati, 59113, Indonesia*

⁴*Nuclear Science and Technology, Department of Material Science and Engineering, University of Sheffield, Sheffield, S1 3JD, United Kingdom*

⁵*Research Center for Nuclear Material and Radioactive Waste Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency (BRIN), South Tangerang, 15314, Indonesia*

* Corresponding author email: rifkanurbayti@gmail.com and muhammad.yusuf.2@brin.go.id

Abstract

The utilization of various radiation sources must be carried out carefully and in compliance with safety criteria for workplace safety. The design of safety goggles lenses for gamma radiation is an efforts to minimize the risk of stochastic and deterministic effect on the eyes of radiation workers. In this research, an investigation to candidate material systems potentially used as safety goggles lenses has been studied. This experiment was conducted using the Monte Carlo simulation method using the PHITS software. The experiment were carried out by exposing 50 mCi ^{60}Co and ^{137}Cs source to candidate materials $\text{TeO}_2\text{-TiO}_2\text{-ZnO}$; $\text{WO}_3\text{-MoO}_3\text{-TeO}_2$, and $\text{Bi}_2\text{O}_3\text{-B}_2\text{O}_3\text{-TeO}_2$ with thickness variation of $2,5 \times 10^{-2}$; $7,5 \times 10^{-2}$; $8,5 \times 10^{-2}$; 2×10^{-1} ; 3×10^{-1} ; 4×10^{-1} ; 5×10^{-1} cm. This research employed a numerical simulation method using PHITS software based on Monte Carlo. The aim was to determine the attenuation of gamma radiation particles when passing through the lens material of the goggles. The program output is a particle flux value, was used to determine the gamma radiation attenuation values, next from these results half value layer (HVL), mean free path (MFP) and build up factor were calculated, leading to the study's conclusions. The simulation results indicated that the $\text{Bi}_2\text{O}_3\text{-B}_2\text{O}_3\text{-TeO}_2$ material system with a thickness of 5×10^{-1} cm was the most effective in reducing radiation particles compared to other candidate material system. The design of safety goggle lenses for gamma radiation using the glass material $\text{TeO}_2\text{-TiO}_2\text{-ZnO}$; $\text{WO}_3\text{-MoO}_3\text{-TeO}_2$, dan $\text{Bi}_2\text{O}_3\text{-B}_2\text{O}_3\text{-TeO}_2$ is recommended only for use when radiation workers handle radiation source of ^{137}Cs or other source with energy equal to or less than that of ^{137}Cs .